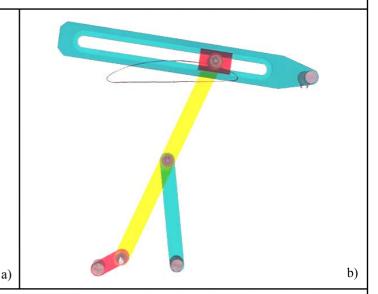

IGM-Getriebesammlung


Koppelkurvenrastgetriebe

315

Abtriebsglied

- Übertragungsgetriebe zur Umwandlung einer umlaufenden Drehung in eine schwingende Drehung mit einer Rast
- Ebenes sechsgliedriges Kurbelgetriebe, ebenes Stephenson-3-Getriebe

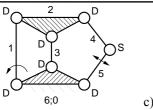


Bild 1. Koppelkurvenrastgetriebe

- a) Kinematisches Schema
- b) Modellgetriebe
- c) Strukturbild

Symbole im Strukturbild:

D für Drehung S für Schiebung W für Schraubung (Windung) ✓ Antriebsgelenk;
Beispiel D₂S: Gelenk mit dem Freiheitsgrad 3; 2 Drehungen, 1 Schiebung

Zugriffsmerkmale:

Anzahl der Antriebsgelenke
Anzahl der Abtriebsglieder
Anzahl der Glieder
Anzahl der Gelenke

1, davon 1 am Gestell
1, davon 1 am Gestell
2, davon 4 binär, 2 ternär
3, davon 6 Drehgelenke (D),
1 Schubgelenk (S)

Abmessungen (in Längeneinheiten):

$$\overline{A_0 A} = I_1 = 1$$
; $\overline{AB} = I_2 = 4$; $\overline{B_0 B} = I_3 = 4$; $\overline{A_0 B_0} = I_6 = 3$;
 $\overline{AK} = k = 8$; $\overline{BK} = I = 4$; $x_{C_0} = 8$; $y_{C_0} = y_g = 4\sqrt{3}$.

Erläuterung:

Das in Bild 1 dargestellte sechsgliedrige Modellgetriebe besitzt als viergliedriges Grundgetriebe eine gleichschenklige Kurbelschwinge A_0ABB_0 , in deren Koppelpunkt K der Schleifenzweischlag $KC_\infty C_0$ angelenkt ist. Der Antrieb erfolgt an der Kurbel 1 mit dem Kurbelwinkel $\varphi = \mathbf{1}B_0A_0A$, das Abtriebsglied ist die schwingende Schleife 5 mit dem Abtriebswinkel ψ_5 . Mit den angegebenen speziellen Abmessungen ist die Kurbelschwinge ein Ersatzgetriebe des Tschebyschevlenkers (siehe Getriebebeschreibung Nr. 613). Die Koppellänge $\overline{AB} \equiv l_2$ ist gleich der Schwingenlänge $\overline{B_0B} \equiv l_3$, und für den Koppelpunktsabstand $\overline{BK} \equiv 1$ gilt $1 = l_2 = l_3$. Der Koppelpunkt K liegt auf der verlängerten Geraden AB und ist somit in der Koppelebene auch durch die Polarkoordinaten $AK = k = 21_2$ und $\$BAK \equiv \kappa = 0^{\circ}$ festgelegt. Der Koppelpunkt beschreibt eine symmetrische Koppelkurve k_K mit einem annähernd geradlinigen Teilstück, das sich der Geraden g besonders gut anschmiegt (genäherte Geradführung des Koppelpunktes K). Die Gerade g ist eine sechspunktig berührende Tangente in K_I und verläuft im Abstand

$$y_g = \overline{B_0 K_I} = 4\sqrt{3} l_1$$

parallel zur Gestellgeraden A₀B₀.

Da der Gestellgelenkpunkt C_0 der Schleife 5 außerhalb der Koppelkurve k_K auf der Geraden g angeordnet ist, führt die Schleife 5 eine schwingende Bewegung aus und zwar mit einem Rastbereich, denn die Schleife bleibt nahezu in Ruhe, während der Koppelpunkt das fast geradlinige Bahnstück bei K_I bzw. $\phi_I = 180^\circ$ durchläuft.

Übertragungsfunktionen:

Die Berechnung der Koordinaten des Koppelpunktes K entlang der symmetrischen Koppelkurve k_K lässt sich in einem x,y-Koordinatensystem mit dem Ursprung in A_0 gemäß der Getriebebeschreibung Nr. 611 in Abhängigkeit vom Kurbelwinkel ϕ unter Berücksichtigung der speziellen Abmessungen durchführen:

$$x = x_K(\varphi), y = y_K(\varphi)$$
.

Der Abtriebswinkel ψ_5 der Schleife 5 errechnet sich dann mit $\overline{x}=x_{C_0}-x$ und $\overline{y}=y-y_{C_0}$ aus

$$\tan \psi_5 = \frac{\overline{y}}{\overline{x}} .$$

Literatur

- Dittrich, G., Müller, J.: Koppelkurvenrastgetriebe. Der Konstrukteur 24 (1993) Nr. 1-2. S. 29/30.
- [2] Meyer zur Capellen, W.: Der Zykloidenlenker und seine Weiterentwicklung. Konstruktion 8 (1956) Nr. 12, S. 510-518.
- [3] Dittrich, G.; Müller, J.: Kurbelschwinge als Ersatzgetriebe des Tschebyschevlenkers. Der Konstrukteur 23 (1992) H. 9, S. 51-52.
- [4] VDI-GKE (Hrsg.): Richtlinie VDI 2725, Blatt 1, Entwurf: Getriebekennwerte f
 ür den Entwurf und die Entwicklung von Getrieben. D
 üsseldorf: VDI-Verlag, 1983.

Autor: Prof. Dr.-Ing. G. Dittrich

Vorveröffentlichung in [1] und Erstveröffentlichung im Internet am 30.05.2000

315

Für die Übertragungsfunktion 1. Ordnung, d.h. die auf die Antriebswinkelgeschwindigkeit $\dot{\phi}$ bezogene Abtriebswinkelgeschwindigkeit $\dot{\psi}_{\epsilon}$, gilt

$$\psi_5' \equiv \frac{d\psi_5}{d\phi} \equiv \frac{\dot{\psi}_5}{\dot{\phi}} = \frac{\overline{x}\,\overline{y}' - \overline{y}\,\overline{x}'}{\overline{x}^2 + \overline{y}^2}$$

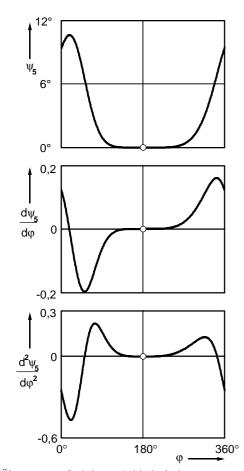
Die in diese Formel einzusetzenden Größen errechnen sich wie folgt: $\overline{x}' = l_1 \sin \phi + k \sigma' \sin \sigma$,

$$\overline{y}' = l_1 \cos \varphi + k \sigma' \cos \sigma$$
,

$$\sigma' = 1 + \overline{\psi}_s' + \overline{\psi}_t'$$
,

$$\overline{\psi}_{s}' = -l_{6}(l_{6} - l_{1}\cos\phi)/f^{2}$$
,

$$\overline{\psi}_{t}' = -(l_{1}l_{6}/f)\sin\phi/\sqrt{4l_{2}^{2}-f^{2}}$$
,


$$f^2 = l_1^2 + l_6^2 - 2l_1 l_6 \cos \varphi$$
.

Auf die Angabe der Formeln zur Berechnung der Übertragungsfunktion 2. Ordnung

$$\psi_5^{\;\prime\prime} \equiv \frac{d^2 \psi_5}{d \, \phi^2} \equiv \frac{\ddot{\psi}_5}{\dot{\phi}^2}$$

bei $\dot{\varphi}$ = const. sei hier verzichtet.

Die Übertragungsfunktionen 0. bis 2. Ordnung sind in **Bild 2** dargestellt.

Bild 2. Übertragungsfunktionen 0. bis 2. Ordnung

Beim Kurbelwinkel $\phi = 180^{\circ}$ beträgt der Schwingwinkel $\psi_5(180^{\circ}) = \psi_{5min} = 0^{\circ}$. Der maximale Schwingwinkel ψ_{5max} und damit der Schwingbereichswinkel $\psi_{5H} = \psi_{5max} - \psi_{5min}$ lässt sich berechnen, indem numerisch der Kurbelwinkel für $\psi_5' = 0$ ermittelt wird. Für das vorliegende Getriebe ist $\psi_{5H} = 10,49^{\circ}$. Die Abhängig-

keit des Schwingbereichswinkels ψ_{5H} von x_{C0} , d.h. von verschiedenen Lagen des Gelenkpunktes C_0 auf der Geraden g., zeigt **Bild 3**.

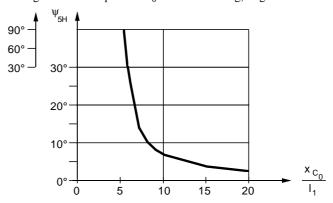
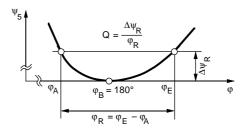



Bild 3. Abhängigkeit des Schwingbereichswinkels ψ_{5H} von der Lage des Gelenkpunktes C_0

Rastgüte:

Bild 4 gibt eine prinzipielle Ausschnittsvergrößerung der Übertragungsfunktion 0. Ordnung um den Bezugswinkel $\phi_B = 180^\circ$ herum zur Definition der Antriebsrastabweichung $Q = \Delta \psi_R/\phi_R$ für das vorliegende Modellgetriebe wieder. Darin ist $\Delta \psi_R$ die Rastabweichung und $\phi_R = \phi_E$ - ϕ_A der Antriebswinkel für den Rastbereich, der bei ϕ_A beginnt und bei ϕ_E endet. Das Diagramm in **Bild 5** zeigt die Abhängigkeit der genannten Größen bei den vorliegenden Getriebeabmessungen. Dem Ablesebeispiel gemäß erstreckt sich die genäherte Rast, die bei $\phi_A = 105^\circ$ beginnt und bei $\phi_E = 268^\circ$ endet, über einen Bereich von $\phi_R = 163^\circ$; sie weist eine Antriebsrastabweichung von $Q = 18,2*10^{-4}$ bzw. eine Rastabweichung $\Delta \psi_R = 0,2969^\circ$ auf.

Bild 4. Zur Definition der Antriebsrastabweichung

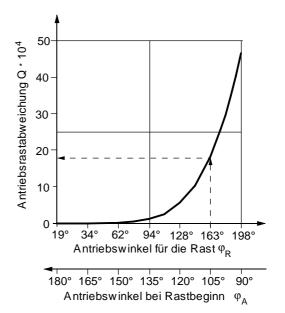


Bild 5. Antriebsrastabweichung für die Rast der Schleife 5