Watt’s Linkage, Evans’ Linkage

- Guidance Mechanism for transformation of a rotation into an approximate straight line
- Swinging Planar Double-Rocker Mechanism

Characteristics:

Number of Input Links Number of Output Links
Number of Links
Number of Joints

Dimensions (in Unit Lengths):
Watt's Linkage
$\overline{\mathrm{A}_{0} \mathrm{~A}}=\mathrm{l}_{1}=5 ; \quad \overline{\mathrm{AB}}=\mathrm{l}_{2}=4 ; \quad \overline{\mathrm{B}_{0} \mathrm{~B}}=\mathrm{l}_{3}=5 ;$
$\overline{\mathrm{A}_{0} \mathrm{~B}_{0}}=\mathrm{l}_{4}=10,77 ; \quad \overline{\mathrm{AK}}=\mathrm{k}=2 ; \quad \overline{\mathrm{BK}}=\mathrm{l}=2$.
Evans’ Linkage
$\overline{\mathrm{A}_{0}^{*} \mathrm{~A}^{*}}=\mathrm{l}_{1}^{*}=2 ; \quad \overline{\mathrm{A}^{*} \mathrm{~B}^{*}}=\mathrm{l}_{2}^{*}=2,5 ; \quad \overline{\mathrm{B}_{0}^{*} \mathrm{~B}^{*}}=\mathrm{l}_{3}^{*}=2,5 ;$
$\overline{\mathrm{A}_{0}^{*} \mathrm{~B}_{0}^{*}}=\mathrm{l}_{4}^{*}=5,39 ; \quad \overline{\mathrm{A}^{*} \mathrm{~K}^{*}}=\mathrm{k}^{*}=5 ; \quad \overline{\mathrm{B}^{*} \mathrm{~K}^{*}}=\mathrm{l}^{*}=2,5$.

Description:

Since the beginning of the development of the steam engine, Watt's Linkage and Evans’ Linkage are well known for their path and approximate straight guidance (fig. 1). The model in fig. 1d shows that both Watt's Linkage (dark linkage) and Evans’ Linkage (bright linkage), which are according to Roberts constructed as cognate linkages, produce the same figure-eight-shaped coupler-point curve. To prove this by demonstration, both linkages are combined by use of a revolute pair that acts as the path following coupler point.

Author: Prof. Dr.-Ing. G. Dittrich
Prepublication in [1] and first publication at Internet on 30.05.2000

The Watt-Linkage (fig. 1b) is a symmetric, swinging doublerocker mechanism $\mathrm{A}_{0} \mathrm{ABB}_{0}$ with $\overline{\mathrm{A}_{0} \mathrm{~A}}=\overline{\mathrm{B}_{0} \mathrm{~B}}$. The coupler point K producing the figure-eight-shaped coupler curve is in the middle of coupler $\overline{\mathrm{AB}}(\overline{\mathrm{AK}}=\overline{\mathrm{BK}})$. The dashed lines show the initial position $A_{0} A^{\prime} B^{\prime} B_{0}$ for which the coupler $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ is perpendicular to the rockers $\mathrm{A}_{0} \mathrm{~A}^{\prime}$ and $\mathrm{B}_{0} \mathrm{~B}^{\prime}$. The coupler point K^{\prime} then intersects with the middle C_{0} of the fixed link $\overline{\mathrm{A}_{0} \mathrm{~B}_{0}}\left(\overline{\mathrm{~A}_{0} \mathrm{C}_{0}}=\overline{\mathrm{B}_{0} \mathrm{C}_{0}}\right)$. With the rocker lengths $\overline{\mathrm{A}_{0} \mathrm{~A}}=\mathrm{l}_{1}, \overline{\mathrm{~B}_{0} \mathrm{~B}}=\mathrm{l}_{3}$, the coupler length $\overline{\mathrm{AB}}=\mathrm{l}_{2}$ and considering $l_{1}=l_{3}$ and $\overline{\mathrm{AK}}=\overline{\mathrm{BK}}=l_{2} / 2$ the length of the fixed link becomes

$$
\begin{equation*}
\overline{\mathrm{A}_{0} \mathrm{~B}_{0}} \equiv \mathrm{l}_{4}=\sqrt{4 \mathrm{l}_{1}^{2}+\mathrm{l}_{2}^{2}} . \tag{1}
\end{equation*}
$$

The figure-eight-shaped coupler curve k_{K} of the coupler point K is symmetric in C_{0} with respect to the fixed link $\mathrm{A}_{0} \mathrm{~B}_{0}$ and to the line perpendicular to $\mathrm{A}_{0} \mathrm{~B}_{0}$ in C_{0}; in C_{0} there is a double point. Both lines g_{1} and g_{2}, which seem to intersect the coupler curve for a great part (approximated straight guide of coupler point K) are fifth order tangents in C_{0} and have an angle β bzw. $\left(180^{\circ}-\beta\right)$ with respect to the fixed link $\mathrm{A}_{0} \mathrm{~B}_{0}$, where the angle β can be calculated by

$$
\begin{equation*}
\tan \beta=\left(2 l_{1}\right) / l_{2} . \tag{2}
\end{equation*}
$$

The line g_{1} intersects with the coupler line $A^{\prime} B^{\prime}$ when the mechanism is in the mentioned initial position.

The in fig.1c presented Evans-Linkage $\mathrm{A}_{0}{ }^{*} \mathrm{~A} * \mathrm{~B}^{*} \mathrm{~B}_{0}{ }^{*}$ is one of the two cognate mechanisms which according the Roberts Theorem exist. Hereby the joints $\mathrm{A}_{0}{ }^{*}$ and A_{0} intersect just as the joints $\mathrm{B}_{0}{ }^{*}$ and C_{0}. The Evans-Linkage is an isosceles, swinging double-rocker mechanism with $\overline{\mathrm{B}_{0}{ }^{*} \mathrm{~B}^{*}}=\overline{\mathrm{A}^{*} \mathrm{~B}^{*}}$. The coupler point K^{*} that produces the same figure-eightshaped coupler curve $\left(k_{\mathrm{K}^{*}}=\mathrm{k}_{\mathrm{K}}\right)$ is on the coupler line $\mathrm{A}^{*} \mathrm{~B}^{*}$ at a distance of $\overline{\mathrm{B}^{*} \mathrm{~K}^{*}}=\overline{\mathrm{A}^{*} \mathrm{~B}^{*}}$ from B^{*}. The kinematical dimensions of Evans' Linkages can be obtained from the cognate Watt's Linkage and turn out to be

$$
\begin{array}{ll}
\overline{\mathrm{A}_{0}^{*} \mathrm{~A}^{*}} \equiv \mathrm{l}_{1}^{*}=0,5 \mathrm{l}_{2}, & \overline{\mathrm{~A}^{*} \mathrm{~B}^{*}} \equiv \mathrm{l}_{2}^{*}=0,5 \mathrm{l}_{1}, \\
\overline{\mathrm{~B}_{0}^{*} \mathrm{~B}^{*}} \equiv \mathrm{l}_{3}^{*}=0,5 \mathrm{l}_{1}, & \overline{\mathrm{~A}_{0}^{*} \mathrm{~B}_{0}^{*}} \equiv l_{4}^{*}=0,5 \mathrm{l}_{4}, \\
\overline{\mathrm{~A}^{*} \mathrm{~K}^{*}} \equiv \mathrm{k}^{*}=\mathrm{l}_{1}, & \overline{\mathrm{~B}^{*} \mathrm{~K}^{*}} \equiv \mathrm{l}^{*}=0,5 \mathrm{l}_{1} .
\end{array}
$$

Therefore the Evans-Linkage can be constructed within a smaller space compared to the cognate Watt-Linkage.

Calculation of the Coupler Curve

The calculation of the coupler curve k_{K} of the Watt-Linkage depends on the input angle $\varphi=\Varangle \mathrm{B}_{0} \mathrm{~A}_{0} \mathrm{~A}$ between the boundaries

$$
\varphi= \pm \operatorname{arc} \cos \left[\left(l_{1}^{2}+l_{4}^{2}-\left(l_{2}+l_{3}\right)^{2}\right) /\left(2 l_{1} 1_{4}\right)\right]
$$

which can be obtained from eq.(1). Since $l_{1}=l_{3}$ and $\overline{\mathrm{AK}}=\overline{\mathrm{BK}}=1_{2} / 2$ the co-ordinates of the coupler curve follow from (fig. 2):

$$
\begin{aligned}
& \overline{\mathrm{B}_{0} \mathrm{~A}}=\mathrm{f}=\sqrt{\mathrm{l}_{1}^{2}+\mathrm{l}_{4}^{2}-2 \mathrm{l}_{1} \mathrm{l}_{4} \cos \varphi} ; \\
& \cos \overline{\psi_{\mathrm{s}}}=\left(\mathrm{l}_{1}^{2}+\mathrm{f}^{2}-\mathrm{l}_{4}^{2}\right) /\left(2 \mathrm{l}_{1} \mathrm{f}\right), \\
& \sin \overline{\psi_{\mathrm{s}}}=\left(\mathrm{l}_{4} \sin \varphi\right) / \mathrm{f} ; \\
& \cos \overline{\psi_{\mathrm{t}}}=\left(\mathrm{l}_{2}^{2}+\mathrm{f}^{2}-\mathrm{l}_{3}^{2}\right) /\left(2 \mathrm{l}_{2} \mathrm{f}\right) ; \\
& \left.\sigma=\varphi+\overline{\psi_{\mathrm{s}}}+\overline{\psi_{\mathrm{t}}}-\pi \quad \text { (coupler angle }\right) ; \\
& \mathrm{x}_{\mathrm{K}}(\varphi)=\mathrm{l}_{1} \cos \varphi+\frac{l_{2}}{2} \cos \sigma, \quad \mathrm{y}_{\mathrm{K}}(\varphi)=\mathrm{l}_{1} \sin \varphi+\frac{\mathrm{l}_{2}}{2} \sin \sigma .
\end{aligned}
$$

Fig. 2. Calculation of the coupler curves
The angle $\bar{\psi}_{\mathrm{s}}$ can be uniquely determined by its sine and cosine values, however care must be taken by the calculations of angle ψ_{t} since the sign of the angle depends on the position of coupler 2 with respect to the diagonal $\mathrm{B}_{0} \mathrm{~A}$.
By use of relation (2) the equation of the line g_{1} (and g_{2}) become

$$
\mathrm{y}=\left(-\underset{(+)}{-\frac{2 l_{1}}{\mathrm{l}_{2}} \mathrm{x}_{(-)}^{+} \frac{\mathrm{l}_{1} \mathrm{l}_{4}}{\mathrm{l}_{2}}, ~}\right.
$$

The error e of the coupler curve with respect to this line, which also defines the accuracy of the straight line guidance around the double point C_{0}, dependent of the input angle φ or the distance

$$
\overline{\mathrm{C}_{0} \mathrm{~K}}=\mathrm{s}=\sqrt{\left(\frac{1_{4}}{2}-\mathrm{x}_{\mathrm{K}}\right)^{2}+\mathrm{y}_{\mathrm{K}}^{2}}
$$

can be found by (fig. 3):

Fig. 3. Error e of the coupler curve k_{K} with respect to the line g_{1} depending on distance $\mathrm{s}=\overline{\mathrm{C}_{0} \mathrm{~K}}$.

References:

[1] Dittrich, G., Müller, J.: Wattscher Lenker, Evans-Lenker. Der Konstrukteur 23 (1992) Nr. 1-2, S. 39/40.
[2] Wunderlich, W.: Ebene Kinematik. BI-Hochschultaschenbücher 447/447a, Mannheim: Bibliographisches Institut, 1970.
[3] Artobolevsky, I.I.: Mechanisms in modern engineering design. Band 1. Moskau: Mir Publishers, 1975.
[4] Meyer zur Capellen, W.; Rischen, K.-A.: Forschungsbericht des Landes Nordrhein-Westfalen Nr. 1066: Symmetrische Koppelkurven und ihre Anwendungen. Köln, Opladen: Westdeutscher Verlag, 1962.
[5] Dittrich, G.; Abel, T.: Kinematik von Blattfeder-Führungsgetrieben, insbesondere für Geradführungen. Konstruktion 38 (1966) Heft 3, S. 101/107.
[6] Dittrich, G.; Braune, R.: Getriebetechnik in Beispielen. 2. Aufl. München, Wien: Oldenbourg Verlag, 1987.

