zur Startseite der DMG-Lib
Home  · Übersicht  · Kontakt  ·

Erweiterte Suche   Mechanismensuche

Confidence-Level-Based New Adaptive Particle Filter for Nonlinear Object Tracking : Un nuovo filtro di particelle adattativo basato sul livello di confidenza per il tracciamento di oggetti non lineare, in: International Journal of Advanced Robotic Systems

thumbnail
Dokument öffnen (benötigt JavaScript)   Dokument öffnen

Allgemeine Angaben

Autor Zhang, Xiaoyong; Peng, Jun; Yu, Wentao; Lin, Kuo-chi
Erschienen  InTech Open Access Publisher, 2012
Ausgabe  
Umfang  
ISBN
Kurzbeschreibung Nonlinear object tracking from noisy
measurements is a basic skill and a challenging task of
mobile robotics, especially under dynamic environments.
The particle filter is a useful tool for nonlinear object
tracking with non‐Gaussian noise. Nonlinear object
tracking needs the real‐time processing capability of the
particle filter. While the number in a traditional particle
filter is fixed, that can lead to a lot of unnecessary
computation. To address this issue, a confidence‐levelbased
new adaptive particle filter (NAPF) algorithm is
proposed in this paper. In this algorithm the idea of
confidence interval is utilized. The least number of
particles for the next time instant is estimated according
to the confidence level and the variance of the estimated
state. Accordingly, an improved systematic re‐sampling
algorithm is utilized for the new improved particle filter.
NAPF can effectively reduce the computation while
ensuring the accuracy of nonlinear object tracking. The
simulation results and the ball tracking results of the
robot verify the effectiveness of the algorithm.
Sammlungen
Zeitschriftenartikel
ab 2000
Übergeordnete Werke
 
no fulltext found International Journal of Advanced Robotic Systems
Autor: Ottaviano, Erika; Ceccarelli, Marco; Husty, Manfred; Yu, Sung-Hoon; Kim, Yong-Tae; Park, Chang-Woo; Hyun, Chang-Ho; Chen, Xiulong; Feng, Weiming; Sun, Xianyang; Gao, Qing; Grigorescu, Sorin M.; Pozna, Claudiu; Liu, Wanli; Zhankui, Wang; Guo, Meng; Fu, Guoyu; Zhang, Jin; Chen, Wenyuan; Peng, Fengchao; Yang, Pei; Chen, Chunlin; Ding, Rui; Yu, Junzhi; Yang, Qinghai; Tan, Min; Polden, Joseph; Pan, [...]
Erschienen: 2004
Verknüpfte Datensätze
Dokumente: International Journal of Advanced Robotic Systems
Permanentlinks
DMG-Lib FaviconDMG-Lib https://www.dmg-lib.org/dmglib/handler?docum=33419009
Europeana FaviconEuropeana  http://www.europeana.eu/portal/record/2020801/dmglib_handler_docum_33419009.html
PDF FaviconPDF  Confidence-Level-Based New Adaptive Particle Filter for Nonlinear Object Tracking
Datenbereitsteller
UCAUniv. Cassino  http://webuser.unicas.it/weblarm/larmindex.htm
Verwaltungsinformationen
Publikationsdatum 2012
Lizenzinformation Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

×