Alla pagina principale della DMG-Lib
Home  · Mappa del sito  · Contatta  ·

Ricerca avanzata   Ricerca di un meccanismo

Multivariate Autoregressive Model Based Heart Motion Prediction Approach for Beating Heart Surgery : Un modello multivariato autoregressivo per la predizione del movimento cardiaco durante intervento chirurgico a cuore battente, in: International Journal of Advanced Robotic Systems

thumbnail
Dokument öffnen (benötigt JavaScript)   Documenti accessibili

Informazioni generali

Autore Liang, Fan; Meng, Xiaofeng; Yu, Yang
Pubblicato  InTech Open Access Publisher, 2013
edizione  
Volume  
ISBN
Abstract A robotic tool can enable a surgeon to conduct
off‐pump coronary artery graft bypass surgery on a
beating heart. The robotic tool actively alleviates the
relative motion between the point of interest (POI) on the
heart surface and the surgical tool and allows the surgeon
to operate as if the heart were stationary. Since the
beating heart‘s motion is relatively high‐band, with
nonlinear and nonstationary characteristics, it is difficult
to follow. Thus, precise beating heart motion prediction is
necessary for the tracking control procedure during the
surgery. In the research presented here, we first observe
that Electrocardiography (ECG) signal contains the causal
phase information on heart motion and non‐stationary
heart rate dynamic variations. Then, we investigate the
relationship between ECG signal and beating heart
motion using Granger Causality Analysis, which
describes the feasibility of the improved prediction of
heart motion. Next, we propose a nonlinear time‐varying
multivariate vector autoregressive (MVAR) model based
adaptive prediction method. In this model, the significant
correlation between ECG and heart motion enables the
improvement of the prediction of sharp changes in heart
motion and the approximation of the motion with
sufficient detail. Dual Kalman Filters (DKF) estimate the
states and parameters of the model, respectively. Last, we
evaluate the proposed algorithm through comparative
experiments using the two sets of collected vivo data.
Collections
Articoli a Rivista
2000 ed oltre
Superordinate work
 
no fulltext found International Journal of Advanced Robotic Systems
Autore: Ottaviano, Erika; Ceccarelli, Marco; Husty, Manfred; Yu, Sung-Hoon; Kim, Yong-Tae; Park, Chang-Woo; Hyun, Chang-Ho; Chen, Xiulong; Feng, Weiming; Sun, Xianyang; Gao, Qing; Grigorescu, Sorin M.; Pozna, Claudiu; Liu, Wanli; Zhankui, Wang; Guo, Meng; Fu, Guoyu; Zhang, Jin; Chen, Wenyuan; Peng, Fengchao; Yang, Pei; Chen, Chunlin; Ding, Rui; Yu, Junzhi; Yang, Qinghai; Tan, Min; Polden, Joseph; Pan, [...]
Erschienen: 2004
Verknüpfte Datensätze
Dokumente: International Journal of Advanced Robotic Systems
Permanentlinks
DMG-Lib FaviconDMG-Lib https://www.dmg-lib.org/dmglib/handler?docum=32343009
Europeana FaviconEuropeana  http://www.europeana.eu/portal/record/2020801/dmglib_handler_docum_32343009.html
PDF FaviconPDF  Multivariate Autoregressive Model Based Heart Motion Prediction Approach for Beating Heart Surgery
Datenbereitsteller
UCAUniv. Cassino  http://webuser.unicas.it/weblarm/larmindex.htm
Verwaltungsinformationen
Publikationsdatum 2013
Lizenzinformation Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

×