Alla pagina principale della DMG-Lib
Home  · Mappa del sito  · Contatta  ·

Ricerca avanzata   Ricerca di un meccanismo

Object Tracking with an Evolutionary Particle Filter Based on Self-Adaptive Multi-Features Fusion : Tracking di oggetti vasato su un filtro evoluzionario e fusione autoadattativa di caratteristiche multiple, in: International Journal of Advanced Robotic Systems

thumbnail
Dokument öffnen (benötigt JavaScript)   Documenti accessibili

Informazioni generali

Autore Xiaowei, Zhang; Liu, Hong; Xiaohong, Sun
Pubblicato  InTech Open Access Publisher, 2013
edizione  
Volume  
ISBN
Abstract Particle filter algorithms are widely used for
object tracking in video sequences, but the standard
particle filter algorithm cannot solve the validity of
particles ideally. To solve the problems of particle
degeneration and sample impoverishment in a particle
filter tracking algorithm, an improved object tracking
algorithm is proposed, which combines a multi‐feature
fusion method and a genetic evolution mechanism. The
algorithm dynamically computes the feature’s fusion
weight by the discriminability of each vision feature and
then constructs the important density function based on
selecting a feature’s fusion method adaptively. Moreover,
a self‐adaptive genetic evolutionary mechanism is
introduced into the particle resampling process and
makes the particle become an agent with the ability of
dynamic self‐adaption. With self‐adaptive crossover and
mutation operators, the evolution system produces a
large number of new particles, which can better
approximate the true state of the tracking object. The
experimental results show that the proposed object
tracking algorithm surpasses the conventional particle
filter on both robustness and accuracy, even though the
tracking object is very challenging regarding illumination
variation, structural deformation,
Collections
Articoli a Rivista
2000 ed oltre
Superordinate work
 
no fulltext found International Journal of Advanced Robotic Systems
Autore: Ottaviano, Erika; Ceccarelli, Marco; Husty, Manfred; Yu, Sung-Hoon; Kim, Yong-Tae; Park, Chang-Woo; Hyun, Chang-Ho; Chen, Xiulong; Feng, Weiming; Sun, Xianyang; Gao, Qing; Grigorescu, Sorin M.; Pozna, Claudiu; Liu, Wanli; Zhankui, Wang; Guo, Meng; Fu, Guoyu; Zhang, Jin; Chen, Wenyuan; Peng, Fengchao; Yang, Pei; Chen, Chunlin; Ding, Rui; Yu, Junzhi; Yang, Qinghai; Tan, Min; Polden, Joseph; Pan, [...]
Pubblicato: 2004
Verknüpfte Datensätze
Dokumente: International Journal of Advanced Robotic Systems
Permanentlinks
DMG-Lib FaviconDMG-Lib https://www.dmg-lib.org/dmglib/handler?docum=32483009
Europeana FaviconEuropeana  http://www.europeana.eu/portal/record/2020801/dmglib_handler_docum_32483009.html
PDF FaviconPDF  Object Tracking with an Evolutionary Particle Filter Based on Self-Adaptive Multi-Features Fusion
Datenbereitsteller
UCAUniv. Cassino  http://webuser.unicas.it/weblarm/larmindex.htm
Verwaltungsinformationen
Publikationsdatum 2013
Lizenzinformation Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

×