PEAUCELLIER-LIPKIN CIRCLE INVERSION MECHANISM

Pinche para ampliarPinche para ampliar Description

The lengths of the links comply with the conditions: C͞E=C͞D=D͞F=E͞F =a, B͞E=B͞D=b and A͞B >A͞C. The mechanism always satisfies the condition B͞C×B͞F=b²-a²=k² where k is the inversion constant. When crank 1 turns about fixed axis A, point F describes circle d which is the inversion of the circle described by point C. Centre 0 of the circle described by point F lies on the straight line passing through points B and A. Distances B͞A and B͞O are related by the condition B͞O=B͞A*(k²/(B͞A²-A͞C²)). Radius OF of the circle described by point F equals O͞F=A͞C(B͞O/B͞A). For the specified link length relationships, point F describes only a circular arc within the limits of the angle of turn of crank 1.
$704$LW,GI$

Linked items
Mechanisms: Peaucellier-Lipkin circle inversion mechanism
Documents: Lever mechanisms  [Streambook]
Permanent links
DMG-Lib FaviconDMG-Lib https://www.dmg-lib.org/dmglib/handler?image=16495023
Europeana FaviconEuropeana  http://www.europeana.eu/portal/record/2020801/dmglib_handler_image_16495023.html
Data provider
ITUIlmenau TU  http://www.tu-ilmenau.de
DMG Lib: De un vistazo, Literatura
para ir a la página principal de DMG-Lib
Home  · Mapa del sitio  · Contacto  ·

Búsqueda avanzada   Búsqueda de mecanismos

A document with dmg id 16495023 is not in the database. Thus, metadata can not be shown.
To view metadata you may select an other document from the list of known documents.

×